Updating search results...

Search Resources

91 Results

View
Selected filters:
  • Lecture
How to Estimate the Value of Pi
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson is about the estimation of the value of Pi. Based on previous knowledge, the students try to estimate Pi value using different methods, such as: direct physical measurements; a geometric probability model; and computer technology. This lesson is designed to stimulate the learning interests of students, to enrich their experience of solving practical problems, and to develop their critical thinking ability. To understand this lesson, students should have some mathematic knowledge about circles, coordinate systems, and geometric probability. They may also need to know something about Excel. To estimate Pi value by direct physical measurements, the students can use any round or cylindrical shaped objects around them, such as round cups or water bottles. When estimating Pi value by a geometric probability model, a dartboard and darts should be prepared before the class. You can also use other games to substitute the dart throwing game. For example, you can throw marbles to the target drawn on the floor. This lesson is about 45-50 minutes. If the students know little about Excel, the teacher may need one more lesson to explain and demonstrate how to use the computer to estimate Pi value. Downloadable from the website is a video demonstration about how to use Excel for estimating Pi.

Subject:
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Renyong Feng
Date Added:
03/18/2020
Instructional Design Tips for Computer-Based E-Learning
Unrestricted Use
CC BY
Rating
0.0 stars

Single lecture presentation containing tips for using technology to enhance teaching. Uses proven multimedia design principles to enhance learning.

Subject:
Education and Training
Material Type:
Lecture
Provider:
University of Michigan
Provider Set:
open.Michigan African Health OER Network
Author:
Cary Engleberg
Date Added:
03/18/2020
Is Bigger Better? A Look at a Selection Bias that Is All Around Us
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video addresses a particular problem of selection bias, a statistical bias in which there is an error in choosing the individuals or groups to make broader inferences. Rather than delve into this broad topic via formal statistics, we investigate how it may appear in our everyday lives, sometimes distorting our perceptions of people, places and events, unless we are careful. When people are picked at random from two groups of different sizes, most of those selected usually come from the bigger group. That means we will hear more about the experience of the bigger group than that of the smaller one. This isn't always a bad thing, but it isn't always a good thing either. Because big groups ''speak louder,'' we have to be careful when we write mathematical formulas about what happened in the two groups. We think about this issue in this video, with examples that involve theaters, buses, and lemons. The prerequisite for this video lesson is a familiarity with algebra. It will take about one hour to complete, and the only materials needed are a blackboard and chalk.

Subject:
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Anna Teytelman
Arnold Barnett
MIT BLOSSOMS
Date Added:
03/18/2020
Is There A Connection Between Computer Network Topologies And A Malaysian Wedding?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this video lesson is to teach students about the different topologies of computer networks and how they function. The approach that is used is highly correlated with common knowledge about weddings and the local Malay culture associated with weddings. Students should be able to relate the act of delivering food to a large crowd of people to the basic principles of network topologies and the method of data transfer within each type of topology. The lesson will begin in a classroom with students working in small groups, answering assigned questions. Teaching aids such as color cards will be used. One student from each group will be appointed as the wedding event manager, and she/he will have to discuss and act out with group members in order to answer more challenging questions. At the end of the lesson, students will be asked to come up with their own version of a hybrid computer network topology. The lesson concept taught here not only educates students on computer topologies, but also introduces students to an important cultural perspective of Malaysia. Above all, this video is designed to assist students with their study of Computer Literacy in schools. The lesson will take up to 60 minutes to complete. Materials needed include: 10 red cards representing waitresses; 10 green cards representing waiters; 10 blue cards representing tables in the hall; a sketch book; and classroom tables and chairs.

Subject:
Engineering and Information Technologies
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Dr. Zaleha Abdullah Juhazreen, Juhazreen Junaidi, Norah Md. Noor, Dr. Noor Azean Atan, Dr. Mohd Nihra Haruzuan Mohamad Said, Dr. Shaharuddin Md Salleh
Date Added:
03/18/2020
The King of Dinosaurs or a Chicken Dinner? One Paleontologist’s Quest to Activate Atavistic Genes and Create a Dinosaur
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson uses the fundamentals of protein synthesis as a context for investigating the closest living relative to Tyrannosaurus rex and evaluating whether or not paleontologist and dinosaur expert, Jack Horner, will be able to "create" live dinosaurs in the lab. The first objective is for students to be able to access and properly utilize the NIH's protein sequence database to perform a BLAST, using biochemical evidence to determine T rex's closest living relative. The second objective is for students to be able to explain and evaluate Jack Horner's plans for creating live dinosaurs in the lab. The main prerequisite for the lesson is a basic understanding of protein synthesis, or the flow of information in the cell from DNA to RNA during transcription and then from RNA to protein during translation

Subject:
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Justin Lessek and Diana Aljets
Date Added:
03/18/2020
Kite Flying: Fun, Art and Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson presents the basics of aerodynamics by using kite flying as an example, i.e., forces acting on a flying object. Students will measure the net force acting on a kite due to blowing air and will learn how a simple instrument like a spring can be used to measure such force. They will also examine and experience how the force on the kite is transferred to the string in the form of tension and will again measure that tension with a simple spring. This lesson will take about 30 minutes to complete. One will need a calibrated spring to measure forces, as well as a few springs to study the coplanar forces.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Date Added:
03/18/2020
The Mathematics of Voting
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this video lesson is to teach students about new and exciting ways of holding an election that they may not be aware of. Students will learn three different methods of voting: plurality, instant runoff, and the Borda count. They will be led through a voting experiment in which they will see the weakness of plurality when there are three or more candidates. This lesson will show that not every voting system is perfect, and that each has its strengths and weaknesses. It will also promote thought, discussion, and understanding of the various methods of voting.

Subject:
Social Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Dr. Andy Felt
Date Added:
03/18/2020
Measuring Distances in the Milky Way
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main aim of this lesson is to show students that distances may be determined without a meter stick—a concept fundamental to such measurements in astronomy. It introduces students to the main concepts behind the first rung of what astronomers call the distance ladder. The four main learning objectives are the following: 1) Explore, in practice, a means of measuring distances without what we most often consider the “direct” means: a meter stick; 2) Understand the limits of a method through the exploration of uncertainties; 3) Understand in the particular method used, the relationship between baseline and the accuracy of the measurement; and 4) Understand the astronomical applications and implications of the method and its limits. Students should be able to use trigonometry and know the relation between trigonometric functions and the triangle. A knowledge of derivatives is also needed to obtain the expression for the uncertainty on the distance measured. Students will need cardboard cut into disks. The number of disks is essentially equal to half the students in the class. Two straight drink straws and one pin per disk. Students will also need a protractor. The lesson should not take more than 50 minutes to complete if the students have the mathematical ability mentioned above. This lesson is complimentary to the BLOSSOMS lesson, "The Parallax Activity." The two lessons could be used sequentially - this one being more advanced - or they could be used separately.

Subject:
Astronomy
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
The Pythagorean Theorem: Geometry’s Most Elegant Theorem
Date Added:
03/18/2020
Meet the Family: Investigating Primate Relationships
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.

Subject:
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Jennifer Cross Peterson
Date Added:
03/18/2020
Methods for Protein Purification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Protein Purification video lesson is intended to give students some insight into the process and tools that scientists and engineers use to explore proteins. It is designed to extend the knowledge of students who are already somewhat sophisticated and who have a good understanding of basic biology. The question that motivates this lesson is, ''what makes two cell types different?'' and this question is posed in several ways. Such scientific reasoning raises the experimental question: how could you study just a subset of specialized proteins that distinguish one cell type from another? Two techniques useful in this regard are considered in the lesson.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Natalie Kuldell, PhD
Date Added:
03/18/2020
The Monty Hall Problem or How to Outsmart a Game Show and Win a Car
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson teaches students how to make decisions in the face of uncertainty by using decision trees. It is aimed for high school kids with a minimal background in probability; the students only need to know how to calculate the probability of two uncorrelated events both occurring (ie flipping 2 heads in a row). Over the course of this lesson, students will learn about the role of uncertainty in decision making, how to make and use a decision tree, how to use limiting cases to develop an intuition, and how this applies to everyday life. The video portion is about fifteen minutes, and the whole lesson, including activities, should be completed in about forty-five minutes. Some of the activities call for students to work in pairs, but a larger group is also okay, especially for the discussion centered activities. The required materials for this lesson are envelopes, small prizes, and some things similar in size and shape to the prize.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Sam Shames, Cameron Tabatabaie, Ben Kaloupek
Date Added:
03/18/2020
The Mysteries of Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson will explore the connections between magnetism in natural materials and electromagnetism. The ultimate goal will be for students to form an understanding that the source of magnetism in natural materials is moving charges. It is helpful, but not required, for the students to have some work with electricity, and other distance forces (such as gravity or the electric force). The lesson will probably take two 50-minute periods to complete. Although the video footage is brief, the activities are in depth, inquiry-based, and can take time for the students to explore. The materials are not specifically prescribed, but can include things such as bar magnets, compasses, iron filings, wire, batteries, steel bolts, coils, straws, and hot glue. The activities include drawing the magnetic fields of bar magnets and electromagnets. The activities also include making a magnet from a drinking straw and iron filings.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Gary Garber
Date Added:
03/18/2020
The Mystery of Motion: Momentum, Kinetic Energy and Their Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video lesson, the concept of momentum applied to hard-body collisions is explained using a number of simple demonstrations, all of which can be repeated in the classroom. Understanding Newton's Laws is fundamental to all of physics, and this lesson introduces the vital concepts of momentum and energy, and their conservation. Only some preliminary ideas of algebra are used here, and all the concepts presented can be found in any high-school level physics book. In terms of materials required, getting hold of large steel balls may not be easy, but large ball bearings can be procured easily. On the basis of what students have learned in the video, teachers can easily generate a large number of questions that relate to one's daily experiences, or which pose new challenges: for example, in a collision between a heavy and light vehicle, why do those inside the lighter one suffer less injury?

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Hoodbhoy
Date Added:
03/18/2020
The Needs of Living Things
Read the Fine Print
Rating
0.0 stars

Students watch video clips of animals and plants in their natural environments to determine what living things need to survive. They will then complete an illustration of their own real or imagined plant or animal fulfilling one or more of their needs for survival, within their natural environment. While this lesson does a good job explaining how animals meet their needs through their environments, additional lessons and experiences with plants would need to be provided in order to meet the full standard.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Ocean Currents and Sea Surface Temperature
Read the Fine Print
Rating
0.0 stars

This interactive tool allows students to gather data using My NASA Data microsets to investigate how differential heating of Earth results in circulation patterns in the oceans and the atmosphere that globally distribute the heat. They examine the relationship between the rotation of Earth and the circular motions of ocean currents and air. Students also make predictions based on the data to concerns about global climate change. They begin by examining the temperature of ocean’s surface currents and ocean surface winds. These currents, driven by the wind, mark the movement of surface heating as monitored by satellites. Students explore the link between 1) ocean temperatures and currents, 2) uneven heating and rotation of Earth, 3) resulting climate and weather patterns, and 4) projected impacts of climate change (global warming). Using the Live Access Server, students can select data sets for various elements for different regions of the globe, at different times of the year, and for multiple years. The information is provided in maps or graphs which can be saved for future reference. Some of the data sets accessed for this lesson include Sea Surface Temperature, Cloud Coverage, and Sea Level Height for this lesson. The lesson provides directions for accessing the data as well as questions to guide discussion and learning. The estimated time for completing the activity is 50 minutes. Inclusion of the Extension activities could broaden the scope of the lesson to several days in length. Links to informative maps and text such as the deep ocean conveyor belt, upwelling, and coastal fog as needed to answer questions in the extension activities are included.

Subject:
Atmospheric Science
Physical Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Open Textbooks using OER Commons Lesson Builder Tool
Unrestricted Use
CC BY
Rating
0.0 stars

This is a supplementary video for the Commonwealth of Learning Open Textbook Manual. It shows how to create Lessons in OER Commons. The OER Commons Lesson Builder allows instructors to create resources that are viewable by students as lessons, and by teachers as lesson plans with supplemental instructional resources.

Subject:
Education and Training
Material Type:
Lecture
Provider:
Commonwealth of Learning
Author:
Andrew Moore
Date Added:
03/18/2020
Optimizing Your Diet: What Linear Programming Can Tell You
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video lesson, students will learn about linear programming (LP) and will solve an LP problem using the graphical method. Its focus is on the famous "Stigler's diet" problem posed by the 1982 Nobel Laureate in economics, George Stigler. Based on his problem, students will formulate their own diet problem and solve it using the graphical method. The prerequisites to this lesson are basic algebra and geometry. The materials needed for the in-class activities include graphing paper and pencil. This lesson can be completed in one class of approximately one hour. If the teacher would like to cover the simplex algorithm by George Dantzig as an alternative solution method, an additional whole class period is suggested.

Subject:
Algebra
Geometry
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Aysegul Topcu
Date Added:
03/18/2020
The Physics of Boomerangs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video explores the mysterious physics behind boomerangs and other rapidly spinning objects. Students will get to make and throw their own boomerangs between video segments! A key idea presented is how torque causes the precession of angular momentum. One class period is required to complete this learning video, and the optimal prerequisites are a familiarity with forces, Newton's laws, vectors and time derivatives. Each student would need the following materials for boomerang construction: cardboard (roughly the size of a postcard), ruler, pencil/pen, scissors, protractor, and a stapler.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Zhiming Darren Tan
Date Added:
03/18/2020
The Physics of Donkey Carts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson explores Newton's Third Law of Motion through examination of several real world examples of this law in action, including that of a donkey cart - a site common in the streets of Pakistan. Students will understand that forces act on objects even if the objects appear to be static and that certain conditions - gravity in particular - affect how two objects interact. The time needed to complete this lesson is approximately 50-60 minutes, and students should be familiar with basic mechanics such as Newton's laws, levers, etc. The materials required are a couple of spring balances, a meter rule, tape, pencil, two desks, and some lab weights (few grams each). The types of in-class activities for between the video breaks include active discussions and participation by students in activities related to the Third Law.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Naveed A. Malik
Date Added:
03/18/2020
The Physics of Pool
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.

Subject:
Geometry
Mathematics
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Joseph A. Formaggio
Date Added:
03/18/2020