In Module 6, students delve further into several geometry topics they have …
In Module 6, students delve further into several geometry topics they have been developing over the years. Grade 7 presents some of these topics, (e.g., angles, area, surface area, and volume) in the most challenging form students have experienced yet. Module 6 assumes students understand the basics. The goal is to build a fluency in these difficult problems. The remaining topics, (i.e., working on constructing triangles and taking slices (or cross-sections) of three-dimensional figures) are new to students.
In Grade 8 Module 1, students expand their basic knowledge of positive …
In Grade 8 Module 1, students expand their basic knowledge of positive integer exponents and prove the Laws of Exponents for any integer exponent. Next, students work with numbers in the form of an integer multiplied by a power of 10 to express how many times as much one is than the other. This leads into an explanation of scientific notation and continued work performing operations on numbers written in this form.
In this module, students learn about translations, reflections, and rotations in the …
In this module, students learn about translations, reflections, and rotations in the plane and, more importantly, how to use them to precisely define the concept of congruence. Throughout Topic A, on the definitions and properties of the basic rigid motions, students verify experimentally their basic properties and, when feasible, deepen their understanding of these properties using reasoning. All the lessons of Topic B demonstrate to students the ability to sequence various combinations of rigid motions while maintaining the basic properties of individual rigid motions. Students learn that congruence is just a sequence of basic rigid motions in Topic C, and Topic D begins the learning of Pythagorean Theorem.
In Module 3, students learn about dilation and similarity and apply that …
In Module 3, students learn about dilation and similarity and apply that knowledge to a proof of the Pythagorean Theorem based on the Angle-Angle criterion for similar triangles. The module begins with the definition of dilation, properties of dilations, and compositions of dilations. One overarching goal of this module is to replace the common idea of same shape, different sizes with a definition of similarity that can be applied to geometric shapes that are not polygons, such as ellipses and circles.
In Module 4, students extend what they already know about unit rates …
In Module 4, students extend what they already know about unit rates and proportional relationships to linear equations and their graphs. Students understand the connections between proportional relationships, lines, and linear equations in this module. Students learn to apply the skills they acquired in Grades 6 and 7, with respect to symbolic notation and properties of equality to transcribe and solve equations in one variable and then in two variables.
In the first topic of this 15 day module, students learn the …
In the first topic of this 15 day module, students learn the concept of a function and why functions are necessary for describing geometric concepts and occurrences in everyday life. Once a formal definition of a function is provided, students then consider functions of discrete and continuous rates and understand the difference between the two. Students apply their knowledge of linear equations and their graphs from Module 4 to graphs of linear functions. Students inspect the rate of change of linear functions and conclude that the rate of change is the slope of the graph of a line. They learn to interpret the equation y=mx+b as defining a linear function whose graph is a line. Students compare linear functions and their graphs and gain experience with non-linear functions as well. In the second and final topic of this module, students extend what they learned in Grade 7 about how to solve real-world and mathematical problems related to volume from simple solids to include problems that require the formulas for cones, cylinders, and spheres.
In Grades 6 and 7, students worked with data involving a single …
In Grades 6 and 7, students worked with data involving a single variable. Module 6 introduces students to bivariate data. Students are introduced to a function as a rule that assigns exactly one value to each input. In this module, students use their understanding of functions to model the possible relationships of bivariate data. This module is important in setting a foundation for students work in algebra in Grade 9.
Module 7 begins with work related to the Pythagorean Theorem and right …
Module 7 begins with work related to the Pythagorean Theorem and right triangles. Before the lessons of this module are presented to students, it is important that the lessons in Modules 2 and 3 related to the Pythagorean Theorem are taught (M2: Lessons 15 and 16, M3: Lessons 13 and 14). In Modules 2 and 3, students used the Pythagorean Theorem to determine the unknown length of a right triangle. In cases where the side length was an integer, students computed the length. When the side length was not an integer, students left the answer in the form of x2=c, where c was not a perfect square number. Those solutions are revisited and are the motivation for learning about square roots and irrational numbers in general.
Module 2 explores two-dimensional and three-dimensional shapes. Students learn about flat and …
Module 2 explores two-dimensional and three-dimensional shapes. Students learn about flat and solid shapes independently as well as how they are related to each other and to shapes in their environment. Students begin to use position words when referring to and moving shapes. Students learn to use their words to distinguish between examples and non-examples of flat and solid shapes.
After students observed, analyzed, and classified objects by shape into pre-determined categories …
After students observed, analyzed, and classified objects by shape into pre-determined categories in Module 2, they now compare and analyze length, weight, volume, and, finally, number in Module 3. The module supports students understanding of amounts and their developing number sense. The module culminates in a three-day exploration, one day devoted to each attribute: length, weight, and volume.
Module 4 marks the next exciting step in math for kindergartners, addition …
Module 4 marks the next exciting step in math for kindergartners, addition and subtraction! They begin to harness their practiced counting abilities, knowledge of the value of numbers, and work with embedded numbers to reason about and solve addition and subtraction expressions and equations. In Topics A and B, decomposition and composition are taught simultaneously using the number bond model so that students begin to understand the relationship between parts and wholes before moving into formal work with addition and subtraction in the rest of the module.
Kindergarten comes to a close with another opportunity for students to explore …
Kindergarten comes to a close with another opportunity for students to explore geometry in Module 6. Throughout the year, students have built an intuitive understanding of two- and three-dimensional figures by examining exemplars, variants, and non-examples. They have used geometry as a context for exploring numerals as well as comparing attributes and quantities. To wrap up the year, students further develop their spatial reasoning skills and begin laying the groundwork for an understanding of area through composition of geometric figures.
Up to this point in Grade K, students have worked intensively within …
Up to this point in Grade K, students have worked intensively within 10 and have often counted to 30 using the Rekenrek during fluency practice. This work sets the stage for this module where students clarify the meaning of the 10 ones and some ones within a teen number and extend that understanding to count to 100.
Module 1 of the Kindergarten curriculum in A Story of Units. In …
Module 1 of the Kindergarten curriculum in A Story of Units. In Topics A and B, classification activities allow students to analyze and observe their world and articulate their observations. Reasoning and dialogue begin immediately. In Topics C, D, E, and F, students order, count, and write up to ten objects to answer how many? questions from linear, to array, to circular, and finally to scattered configurations wherein they must devise a path through the objects as they count. In Topics G and H, students use their understanding of relationships between numbers and know that each successive number name refers to a quantity that is one greater and that the number before is one less.
In order to assist educators with the implementation of the Common Core, …
In order to assist educators with the implementation of the Common Core, the New York State Education Department provides curricular modules in P-12 English Language Arts and Mathematics that schools and districts can adopt or adapt for local purposes. The full year of Algebra I curriculum is available below.
In order to assist educators with the implementation of the Common Core, …
In order to assist educators with the implementation of the Common Core, the New York State Education Department provides curricular modules in P-12 English Language Arts and Mathematics that schools and districts can adopt or adapt for local purposes. The Geometry curriculum is available below.
Module 1 sets the stage for expanding students' understanding of transformations by …
Module 1 sets the stage for expanding students' understanding of transformations by exploring the notion of linearity. This leads to the study of complex numbers and linear transformations in the complex plane. The teacher materials consist of the teacher pages including exit tickets, exit ticket solutions, and all student materials with solutions for each lesson in Module 1.
Module 2 extends the concept of matrices introduced in Module 1. Students …
Module 2 extends the concept of matrices introduced in Module 1. Students look at incidence relationships in networks and encode information about them via high-dimensional matrices. Matrix properties are studied as well as the role of the zero and identity matrices. Students then use matrices to study and solve higher order systems of equations. Vectors are introduced, and students study the arithmetic of vectors and vector magnitude. The module ends as students program video games using matrices and vectors.
Students revisit the fundamental theorem of algebra as they explore complex roots …
Students revisit the fundamental theorem of algebra as they explore complex roots of polynomial functions. They use polynomial identities, the binomial theorem, and Pascals Triangle to find roots of polynomials and roots of unity. Students compare and create different representations of functions while studying function composition, graphing functions, and finding inverse functions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.