Updating search results...

Search Resources

9 Results

View
Selected filters:
  • soap
Cell Celebration!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
09/18/2014
Down with the Clip!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see how surface tension can enable light objects (paper clips, peppercorns) to float on an island of oil in water, and subsequently sink when the surface tension of the oil/water interface is reduced by the addition of a surfactant; such as ordinary dish soap.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
Get Your Charge Away from Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity is an easy way to demonstrate the fundamental properties of polar and non-polar molecules (such as water and oil), how they interact, and the affect surfactants (such as soap) have on their interactions. Students see the behavior of oil and water when placed together, and the importance soap (a surfactant) plays in the mixing of oil and water which is why soap is used every day to clean greasy objects, such as hands and dishes. This activity is recommended for all levels of student, grades 3-12, as it can easily be scaled to meet any desired level of difficulty.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
Let's Get Dirty
Read the Fine Print
Educational Use
Rating
0.0 stars

In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
The Search for Surfactants: What Is the Best Soap?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.

Subject:
Algebra
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Shawn Richard
Date Added:
02/24/2020
Soap vs. Shampoo Surfactant Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the properties of solutions—such as ion interactions, surface tension and viscosity—as they make their own soap and shampoo and then compare their properties. Working as if they are chemical engineers, they explore and compare how the two surfactants behave in tap water, as well as classroom-prepared acidic water, hard water and seawater using four tests: a “shake test” (assessing the amount of bubbles produced), a surface tension test, a viscosity test, and a pH test. Then they coalesce their findings into a recommendation for how to engineer the best soap versus shampoo. The activity may be shortened by using purchased liquid soap and shampoo from which students proceed to conduct the four tests. A lab worksheet and post-quiz are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Dahlia Amato
Date Added:
02/24/2020
Soapy Stress
Read the Fine Print
Educational Use
Rating
0.0 stars

To experience the three types of material stress related to rocks — tensional, compressional and shear — students break bars of soap using only their hands. They apply force created by the muscles in their own hands to put pressure on the soap, a model for the larger scale, real-world phenomena that forms, shapes and moves the rocks of our planet. They also learn the real-life implications of understanding stress in rocks, both for predicting natural hazards and building safe structures.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jacquelyn Sullivan
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
10/14/2015
Sudsy Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

Students culture cells in order to find out which type of surfactant (in this case, soap) is best at removing bacteria. Groups culture cells from unwashed hands and add regular bar soap, regular liquid soap, anti-bacterial soap, dishwasher soap, and hand sanitizer to the cultures. The cultures are allowed to grow for two days and then the students assess which type of soap design did the best job of removing bacteria cells from unwashed hands. Students extend their knowledge of engineering and surfactants for different environmental applications.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
Surfactants: Helping Molecules Get Along
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basics of molecules and how they interact with each other. They learn about the idea of polar and non-polar molecules and how they act with other fluids and surfaces. Students acquire a conceptual understanding of surfactant molecules and how they work on a molecular level. They also learn of the importance of surfactants, such as soaps, and their use in everyday life. Through associated activities, students explore how surfactant molecules are able to bring together two substances that typically do not mix, such as oil and water. This lesson and its associated activities are easily scalable for grades 3-12.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014