Students connect polynomial arithmetic to computations with whole numbers and integers. Students …

Students connect polynomial arithmetic to computations with whole numbers and integers. Students learn that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. This unit helps students see connections between solutions to polynomial equations, zeros of polynomials, and graphs of polynomial functions. Polynomial equations are solved over the set of complex numbers, leading to a beginning understanding of the fundamental theorem of algebra. Application and modeling problems connect multiple representations and include both real world and purely mathematical situations.

Module 2 builds on students previous work with units and with functions …

Module 2 builds on students previous work with units and with functions from Algebra I, and with trigonometric ratios and circles from high school Geometry. The heart of the module is the study of precise definitions of sine and cosine (as well as tangent and the co-functions) using transformational geometry from high school Geometry. This precision leads to a discussion of a mathematically natural unit of rotational measure, a radian, and students begin to build fluency with the values of the trigonometric functions in terms of radians. Students graph sinusoidal and other trigonometric functions, and use the graphs to help in modeling and discovering properties of trigonometric functions. The study of the properties culminates in the proof of the Pythagorean identity and other trigonometric identities.

In this module, students synthesize and generalize what they have learned about …

In this module, students synthesize and generalize what they have learned about a variety of function families. They extend the domain of exponential functions to the entire real line (N-RN.A.1) and then extend their work with these functions to include solving exponential equations with logarithms (F-LE.A.4). They explore (with appropriate tools) the effects of transformations on graphs of exponential and logarithmic functions. They notice that the transformations on a graph of a logarithmic function relate to the logarithmic properties (F-BF.B.3). Students identify appropriate types of functions to model a situation. They adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as, the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions, is at the heart of this module. In particular, through repeated opportunities in working through the modeling cycle (see page 61 of the CCLS), students acquire the insight that the same mathematical or statistical structure can sometimes model seemingly different situations.

Students build a formal understanding of probability, considering complex events such as …

Students build a formal understanding of probability, considering complex events such as unions, intersections, and complements as well as the concept of independence and conditional probability. The idea of using a smooth curve to model a data distribution is introduced along with using tables and techonolgy to find areas under a normal curve. Students make inferences and justify conclusions from sample surveys, experiments, and observational studies. Data is used from random samples to estimate a population mean or proportion. Students calculate margin of error and interpret it in context. Given data from a statistical experiment, students use simulation to create a randomization distribution and use it to determine if there is a significant difference between two treatments.

In this module, students reconnect with and deepen their understanding of statistics …

In this module, students reconnect with and deepen their understanding of statistics and probability concepts first introduced in Grades 6, 7, and 8. Students develop a set of tools for understanding and interpreting variability in data, and begin to make more informed decisions from data. They work with data distributions of various shapes, centers, and spreads. Students build on their experience with bivariate quantitative data from Grade 8. This module sets the stage for more extensive work with sampling and inference in later grades.

In earlier grades, students define, evaluate, and compare functions and use them …

In earlier grades, students define, evaluate, and compare functions and use them to model relationships between quantities. In this module, students extend their study of functions to include function notation and the concepts of domain and range. They explore many examples of functions and their graphs, focusing on the contrast between linear and exponential functions. They interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and understand the limitations of various representations.

In earlier modules, students analyze the process of solving equations and developing …

In earlier modules, students analyze the process of solving equations and developing fluency in writing, interpreting, and translating between various forms of linear equations (Module 1) and linear and exponential functions (Module 3). These experiences combined with modeling with data (Module 2), set the stage for Module 4. Here students continue to interpret expressions, create equations, rewrite equations and functions in different but equivalent forms, and graph and interpret functions, but this time using polynomial functions, and more specifically quadratic functions, as well as square root and cube root functions.

Through this lesson and its two associated activities, students are introduced to …

Through this lesson and its two associated activities, students are introduced to the use of geometry in engineering design, and conclude by making scale models of objects of their choice. The practice of developing scale models is often used in engineering design to analyze the effectiveness of proposed design solutions. In this lesson, students complete fencing (square) and fire pit (circle) word problems on two worksheets—which involves side and radius dimensions, perimeters, circumferences and areas—guiding them to discover the relationships between the side length of a square and its area, and the radius of a circle and its area. They also think of real-world engineering applications of the geometry concepts.

Module 1 embodies critical changes in Geometry as outlined by the Common …

Module 1 embodies critical changes in Geometry as outlined by the Common Core. The heart of the module is the study of transformations and the role transformations play in defining congruence. The topic of transformations is introduced in a primarily experiential manner in Grade 8 and is formalized in Grade 10 with the use of precise language. The need for clear use of language is emphasized through vocabulary, the process of writing steps to perform constructions, and ultimately as part of the proof-writing process.

Just as rigid motions are used to define congruence in Module 1, …

Just as rigid motions are used to define congruence in Module 1, so dilations are added to define similarity in Module 2. To be able to discuss similarity, students must first have a clear understanding of how dilations behave. This is done in two parts, by studying how dilations yield scale drawings and reasoning why the properties of dilations must be true. Once dilations are clearly established, similarity transformations are defined and length and angle relationships are examined, yielding triangle similarity criteria. An in-depth look at similarity within right triangles follows, and finally the module ends with a study of right triangle trigonometry.

Module 3, Extending to Three Dimensions, builds on students understanding of congruence …

Module 3, Extending to Three Dimensions, builds on students understanding of congruence in Module 1 and similarity in Module 2 to prove volume formulas for solids. The student materials consist of the student pages for each lesson in Module 3. The copy ready materials are a collection of the module assessments, lesson exit tickets and fluency exercises from the teacher materials.

In this module, students explore and experience the utility of analyzing algebra …

In this module, students explore and experience the utility of analyzing algebra and geometry challenges through the framework of coordinates. The module opens with a modeling challenge, one that reoccurs throughout the lessons, to use coordinate geometry to program the motion of a robot that is bound within a certain polygonal region of the planethe room in which it sits. To set the stage for complex work in analytic geometry (computing coordinates of points of intersection of lines and line segments or the coordinates of points that divide given segments in specific length ratios, and so on), students will describe the region via systems of algebraic inequalities and work to constrain the robot motion along line segments within the region.

This module brings together the ideas of similarity and congruence and the …

This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year. It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story. This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.

In this first module of Grade 1, students make significant progress towards …

In this first module of Grade 1, students make significant progress towards fluency with addition and subtraction of numbers to 10 as they are presented with opportunities intended to advance them from counting all to counting on which leads many students then to decomposing and composing addends and total amounts.

Module 2 serves as a bridge from students' prior work with problem …

Module 2 serves as a bridge from students' prior work with problem solving within 10 to work within 100 as students begin to solve addition and subtraction problems involving teen numbers. Students go beyond the Level 2 strategies of counting on and counting back as they learn Level 3 strategies informally called "make ten" or "take from ten."

Module 3 begins by extending students kindergarten experiences with direct length comparison …

Module 3 begins by extending students kindergarten experiences with direct length comparison to indirect comparison whereby the length of one object is used to compare the lengths of two other objects. Longer than and shorter than are taken to a new level of precision by introducing the idea of a length unit. Students then explore the usefulness of measuring with similar units. The module closes with students representing and interpreting data.

Module 4 builds upon Module 2s work with place value within 20, …

Module 4 builds upon Module 2s work with place value within 20, now focusing on the role of place value in the addition and subtraction of numbers to 40. Students study, organize, and manipulate numbers within 40. They compare quantities and begin using the symbols for greater than (>) and less than (<). Addition and subtraction of tens is another focus of this module as is the use of familiar strategies to add two-digit and single-digit numbers within 40. Near the end of the module, the focus moves to new ways to represent larger quantities and adding like place value units as students add two-digit numbers.

In Module 5, students consider partwhole relationships through a geometric lens. The …

In Module 5, students consider partwhole relationships through a geometric lens. The module opens with students identifying the defining parts, or attributes, of two- and three-dimensional shapes, building on their kindergarten experiences of sorting, analyzing, comparing, and creating various two- and three-dimensional shapes and objects. Students combine shapes to create a new whole: a composite shape. They also relate geometric figures to equal parts and name the parts as halves and fourths. The module closes with students applying their understanding of halves to tell time to the hour and half hour.

In this final module of the Grade 1 curriculum, students bring together …

In this final module of the Grade 1 curriculum, students bring together their learning from Module 1 through Module 5 to learn the most challenging Grade 1 standards and celebrate their progress. As the module opens, students grapple with comparative word problem types. Next, they extend their understanding of and skill with tens and ones to numbers to 100. Students also extend their learning from Module 4 to the numbers to 100 to add and subtract. At the start of the second half of Module 6, students are introduced to nickels and quarters, having already used pennies and dimes in the context of their work with numbers to 40 in Module 4. Students use their knowledge of tens and ones to explore decompositions of the values of coins. The module concludes with fun fluency festivities to celebrate a year's worth of learning.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.