This 10-day module builds on Grade 2 concepts about data, graphing, and …
This 10-day module builds on Grade 2 concepts about data, graphing, and line plots. The two topics in this module focus on generating and analyzing categorical and measurement data. By the end of the module, students are working with a mixture of scaled picture graphs, bar graphs, and line plots to problem solve using both categorical and measurement data.
This 40-day final module of the year offers students intensive practice with …
This 40-day final module of the year offers students intensive practice with word problems, as well as hands-on investigation experiences with geometry and perimeter. The module begins with solving one- and two-step word problems based on a variety of topics studied throughout the year, using all four operations. Next students explore geometry. Students tessellate to bridge geometry experience with the study of perimeter. Line plots, familiar from Module 6, help students draw conclusions about perimeter and area measurements. Students solve word problems involving area and perimeter using all four operations. The module concludes with a set of engaging lessons that briefly review the fundamental Grade 3 concepts of fractions, multiplication, and division.
In this 25-day module of Grade 4, students extend their work with …
In this 25-day module of Grade 4, students extend their work with whole numbers. They begin with large numbers using familiar units (hundreds and thousands) and develop their understanding of millions by building knowledge of the pattern of times ten in the base ten system on the place value chart (4.NBT.1). They recognize that each sequence of three digits is read as hundreds, tens, and ones followed by the naming of the corresponding base thousand unit (thousand, million, billion).
Module 2 uses length, mass and capacity in the metric system to …
Module 2 uses length, mass and capacity in the metric system to convert between units using place value knowledge. Students recognize patterns of converting units on the place value chart, just as 1000 grams is equal 1 kilogram, 1000 ones is equal to 1 thousand. Conversions are recorded in two-column tables and number lines, and are applied in single- and multi-step word problems solved by the addition and subtraction algorithm or a special strategy. Mixed unit practice prepares students for multi-digit operations and manipulating fractional units in future modules.
In this 43-day module, students use place value understanding and visual representations …
In this 43-day module, students use place value understanding and visual representations to solve multiplication and division problems with multi-digit numbers. As a key area of focus for Grade 4, this module moves slowly but comprehensively to develop students ability to reason about the methods and models chosen to solve problems with multi-digit factors and dividends.
This 20-day module introduces points, lines, line segments, rays, and angles, as …
This 20-day module introduces points, lines, line segments, rays, and angles, as well as the relationships between them. Students construct, recognize, and define these geometric objects before using their new knowledge and understanding to classify figures and solve problems. With angle measure playing a key role in their work throughout the module, students learn how to create and measure angles, as well as create and solve equations to find unknown angle measures. In these problems, where the unknown angle is represented by a letter, students explore both measuring the unknown angle with a protractor and reasoning through the solving of an equation. Through decomposition and composition activities as well as an exploration of symmetry, students recognize specific attributes present in two-dimensional figures. They further develop their understanding of these attributes as they classify two-dimensional figures based on them.
In this 40-day module, students build on their Grade 3 work with …
In this 40-day module, students build on their Grade 3 work with unit fractions as they explore fraction equivalence and extend this understanding to mixed numbers. This leads to the comparison of fractions and mixed numbers and the representation of both in a variety of models. Benchmark fractions play an important part in students ability to generalize and reason about relative fraction and mixed number sizes. Students then have the opportunity to apply what they know to be true for whole number operations to the new concepts of fraction and mixed number operations.
This 20-day module gives students their first opportunity to explore decimal numbers …
This 20-day module gives students their first opportunity to explore decimal numbers via their relationship to decimal fractions, expressing a given quantity in both fraction and decimal forms. Utilizing the understanding of fractions developed throughout Module 5, students apply the same reasoning to decimal numbers, building a solid foundation for Grade 5 work with decimal operations.
In this 20-day module, students build their competencies in measurement as they …
In this 20-day module, students build their competencies in measurement as they relate multiplication to the conversion of measurement units. Throughout the module, students will explore multiple strategies for solving measurement problems involving unit conversion.
In Module 1, students’ understanding of the patterns in the base ten …
In Module 1, students’ understanding of the patterns in the base ten system are extended from Grade 4’s work with place value of multi-digit whole numbers and decimals to hundredths to the thousandths place. In Grade 5, students deepen their knowledge through a more generalized understanding of the relationships between and among adjacent places on the place value chart, e.g., 1 tenth times any digit on the place value chart moves it one place value to the right. Toward the module’s end students apply these new understandings as they reason about and perform decimal operations through the hundredths place.
In Module 2 students apply patterns of the base ten system to …
In Module 2 students apply patterns of the base ten system to mental strategies and a sequential study of multiplication via area diagrams and the distributive property leading to fluency with the standard algorithm. Students move from whole numbers to multiplication with decimals, again using place value as a guide to reason and make estimations about products. Multiplication is explored as a method for expressing equivalent measures in both whole number and decimal forms. A similar sequence for division begins concretely with number disks as an introduction to division with multi-digit divisors and leads student to divide multi-digit whole number and decimal dividends by two-digit divisors using a vertical written method. In addition, students evaluate and write expressions, recording their calculations using the associative property and parentheses. Students apply the work of the module to solve multi-step word problems using multi-digit multiplication and division with unknowns representing either the group size or number of groups. An emphasis on the reasonableness of both products and quotients, interpretation of remainders and reasoning about the placement of decimals draws on skills learned throughout the module, including refining knowledge of place value, rounding, and estimation.
In Module 3, students' understanding of addition and subtraction of fractions extends …
In Module 3, students' understanding of addition and subtraction of fractions extends from earlier work with fraction equivalence and decimals. This module marks a significant shift away from the elementary grades' centrality of base ten units to the study and use of the full set of fractional units from Grade 5 forward, especially as applied to algebra.
Grade 5s Module 4 extends student understanding of fraction operations to multiplication …
Grade 5s Module 4 extends student understanding of fraction operations to multiplication and division of both fractions and decimal fractions. Work proceeds from interpretation of line plots which include fractional measurements to interpreting fractions as division and reasoning about finding fractions of sets through fraction by whole number multiplication. The module proceeds to fraction by fraction multiplication in both fraction and decimal forms. An understanding of multiplication as scaling and multiplication by n/n as multiplication by 1 allows students to reason about products and convert fractions to decimals and vice versa. Students are introduced to the work of division with fractions and decimal fractions. Division cases are limited to division of whole numbers by unit fractions and unit fractions by whole numbers. Decimal fraction divisors are introduced and equivalent fraction and place value thinking allow student to reason about the size of quotients, calculate quotients and sensibly place decimals in quotients. Throughout the module students are asked to reason about these important concepts by interpreting numerical expressions which include fraction and decimal operations and by persevering in solving real-world, multistep problems which include all fraction operations supported by the use of tape diagrams.
In this 25-day module, students work with two- and three-dimensional figures. Volume …
In this 25-day module, students work with two- and three-dimensional figures. Volume is introduced to students through concrete exploration of cubic units and culminates with the development of the volume formula for right rectangular prisms. The second half of the module turns to extending students understanding of two-dimensional figures. Students combine prior knowledge of area with newly acquired knowledge of fraction multiplication to determine the area of rectangular figures with fractional side lengths. They then engage in hands-on construction of two-dimensional shapes, developing a foundation for classifying the shapes by reasoning about their attributes. This module fills a gap between Grade 4s work with two-dimensional figures and Grade 6s work with volume and area.
In this 40-day module, students develop a coordinate system for the first …
In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0, the planes coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.
In order to assist educators with the implementation of the Common Core, …
In order to assist educators with the implementation of the Common Core, the New York State Education Department provides curricular modules in P-12 English Language Arts and Mathematics that schools and districts can adopt or adapt for local purposes. The full year of Grade 6 Mathematics curriculum is available from the module links
Students begin their sixth grade year investigating the concepts of ratio and …
Students begin their sixth grade year investigating the concepts of ratio and rate. They use multiple forms of ratio language and ratio notation, and formalize understanding of equivalent ratios. Students apply reasoning when solving collections of ratio problems in real world contexts using various tools (e.g., tape diagrams, double number line diagrams, tables, equations and graphs). Students bridge their understanding of ratios to the value of a ratio, and then to rate and unit rate, discovering that a percent of a quantity is a rate per 100. The 35 day module concludes with students expressing a fraction as a percent and finding a percent of a quantity in real world concepts, supporting their reasoning with familiar representations they used previously in the module.
In Module 1, students used their existing understanding of multiplication and division …
In Module 1, students used their existing understanding of multiplication and division as they began their study of ratios and rates. In Module 2, students complete their understanding of the four operations as they study division of whole numbers, division by a fraction and operations on multi-digit decimals. This expanded understanding serves to complete their study of the four operations with positive rational numbers, thereby preparing students for understanding, locating, and ordering negative rational numbers (Module 3) and algebraic expressions (Module 4).
Students are familiar with the number line and determining the location of …
Students are familiar with the number line and determining the location of positive fractions, decimals, and whole numbers from previous grades. Students extend the number line (both horizontally and vertically) in Module 3 to include the opposites of whole numbers. The number line serves as a model to relate integers and other rational numbers to statements of order in real-world contexts. In this module's final topic, the number line model is extended to two-dimensions, as students use the coordinate plane to model and solve real-world problems involving rational numbers.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.