Updating search results...

Search Resources

1764 Results

View
Selected filters:
  • oer-commons-collections
Aging Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn about the form and function of the human heart through lecture, research and dissection. Following the steps of the Legacy Cycle, students brainstorm, research, design and present viable solutions to various heart conditions as presented through a unit challenge. Additionally, students study how heart valves work and investigate how faulty valves can be replaced with new ones through advancements in engineering and technology. This unit demonstrates to students how and why the heart is such a powerful organ in our bodies

Subject:
Engineering and Information Technologies
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Air - Is It Really There?
Read the Fine Print
Educational Use
Rating
0.0 stars

By watching and performing several simple experiments, students develop an understanding of the properties of air: it has mass, it takes up space, it can move, it exerts pressure, it can do work.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Air Masses
Read the Fine Print
Rating
0.0 stars

This is Activity 12 of a set of Level 1 activities designed by the Science Center for Teaching, Outreach, and Research on Meteorology (STORM) Project. The authors suggest that previous activities in the unit be completed before Activity 12: Air Masses, including those that address pressure systems and dew point temperature. In Activity 12, the students learn about the four main types of air masses that affect weather in the United States, their characteristic temperatures, and humidity levels as it relates to dew point temperatures. The lesson plan follows the 5E format. Initially, students discuss local weather and then examine surface temperature and dew point data on maps to determine patterns and possible locations of air masses. They learn about the source regions of air masses and compare their maps to a forecast weather map with fronts and pressure systems drawn in. During the Extension phase, students access current maps with surface and dew point temperatures at http://www.uni.edu/storm/activities/level1 and try to identify locations of air masses. They sketch in fronts and compare their results to the fronts map. Evaluation consists of collection of student papers.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Air Pollution in the Pacific Northwest
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Farren Herron-Thorpe
Date Added:
09/18/2014
Air Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Air Quality InQuiry (AQ-IQ)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in hands-on, true-to-life research experiences on air quality topics chosen for personal interest through a unit composed of one lesson and five associated activities. Using a project-based learning approach suitable for secondary science classrooms and low-cost air quality monitors, students gain the background and skills needed to conduct their own air quality research projects. The curriculum provides: 1) an introduction to air quality science, 2) data collection practice, 3) data analysis practice, 4) help planning and conducting a research project and 5) guidance in interpreting data and presenting research in professional poster format. The comprehensive curriculum requires no pre-requisite knowledge of air quality science or engineering. This curriculum takes advantage of low-cost, next-generation, open-source air quality monitors called Pods. These monitors were developed in a mechanical engineering lab at the University of Colorado Boulder and are used for academic research as well as education and outreach. The monitors are made available for use with this curriculum through AQ-IQ Kits that may be rented from the university by teachers. Alternatively, nearly the entire unit, including the student-directed projects, could also be completed without an air quality monitor. For example, students can design research projects that utilize existing air quality data instead of collecting their own, which is highly feasible since much data is publically available. In addition, other low-cost monitors could be used instead of the Pods. Also, the curriculum is intentionally flexible, so that the lesson and its activities can be used individually. See the Other section for details about the Pods and ideas for alternative equipment, usage without air quality monitors, and adjustments to individually teach the lesson and activities.

Subject:
Physical Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Author:
Ashley Collier
Ben Graves
Daniel Knight
Drew Meyers
Eric Ambos
Eric Lee
Erik Hotaling
Evan Coffey
Hanadi Adel Salamah
Joanna Gordon
Katya Hafich
Michael Hannigan
Nicholas VanderKolk
Olivia Cecil
Victoria Danner
Date Added:
02/24/2020
Air Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to air masses, with an emphasis on the differences between and characteristics of high- versus low-pressure air systems. Students also hear about weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space.

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
The Air We Breathe
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. They investigate the technologies developed by engineers to reduce air pollution.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014
Algae: Tiny Plants with Big Energy Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to biofuels, biological engineers, algae and how they grow (photosynthesis), and what parts of algae can be used for biofuel (biomass from oils, starches, cell wall sugars). Through this lesson, plants—and specifically algae—are presented as an energy solution. Students learn that breaking apart algal cell walls enables access to oil, starch, and cell wall sugars for biofuel production. Students compare/contrast biofuels and fossil fuels. They learn about the field of biological engineering, including what biological engineers do. A 20-slide PowerPoint® presentation is provided that supports students taking notes in the Cornell format. Short pre- and post-quizzes are provided. This lesson prepares students to conduct the associated activity in which they make and then eat edible algal cell models.

Subject:
Biology
Chemistry
Engineering and Information Technologies
Life Science
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Lauren Jabusch
Date Added:
05/16/2017
All About Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the differences between types of water (surface and ground), as well as the differences between streams, rivers and lakes. Then, they learn about dissolved organic matter (DOM), and the role it plays in identifying drinking water sources. Finally, students are introduced to conventional drinking water treatment processes.

Subject:
Engineering and Information Technologies
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Ebert
Marissa H. Forbes
Date Added:
09/18/2014
All Caught Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Commercial fishing nets often trap "unprofitable" animals in the process of catching target species. In this activity, students experience the difficulty that fishermen experience while trying to isolate a target species when a variety of sea animals are found in the area of interest. Then the class discusses the large magnitude of this problem. Students practice data acquisition and analysis skills by collecting data and processing it to deduce trends on target species distribution. They conclude by discussing how bycatch impacts their lives and whether or not it is an important environmental issue that needs attention. As an extension, students use their creativity and innovative skills to design nets or other methods, theoretically and/or through hands-on prototyping, that fisherman could use to help avoid bycatch.

Subject:
Ecology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Matt Nusnbaum
Vicki Thayer
Date Added:
10/14/2015
All Caught Up: Bycatching and Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Bycatch, the unintended capture of animals in commercial fishing gear, is a hot topic in marine conservation today. The surprisingly high level of bycatch about 25% of the entire global catch is responsible for the decline of hundreds of thousands of dolphins, whales, porpoises, seabirds and sea turtles each year. Through this curricular unit, students analyze the significance of bycatch in the global ecosystem and propose solutions to help reduce bycatch. They become familiar with current attempts to reduce the fishing mortality of these animals. Through the associated activities, the challenges faced today are reinforced and students are stimulated to brainstorm about possible engineering designs or policy changes that could reduce the magnitude of bycatch.

Subject:
Ecology
Engineering and Information Technologies
Life Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Matt Nusnbaum
Vicki Thayer
Date Added:
10/14/2015
All Fat Is Not Created Equally!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that fats found in the foods we eat are not all the same; they discover that physical properties of materials are related to their chemical structures. Provided with several samples of commonly used fats with different chemical properties (olive oil, vegetable oil, shortening, animal fat and butter), student groups build and use simple LEGO MINDSTORMS(TM) NXT robots with temperature and light sensors to determine the melting points of the fat samples. Because of their different chemical structures, these fats exhibit different physical properties, such as melting point and color. This activity uses the fact that fats are opaque when solid and translucent when liquid to determine the melting point of each sample upon being heated. Students heat the samples, and use the robot to determine when samples are melted. They analyze plots of their collected data to compare melting points of the oil samples to look for trends. Discrepancies are correlated to differences in the chemical structure and composition of the fats.

Subject:
Engineering and Information Technologies
Health Science Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jasmin Hume
Date Added:
09/18/2014
All Things Being Equal
Read the Fine Print
Rating
0.0 stars

This set of a teacher and student guides provides instruction on a 2-3 day series of activities about Le Chatelier’s principle, which shows the effect of changes to conditions in an equilibrium reaction. Students work in pairs or groups to develop their concepts of equilibrium and the effects of changing the amount of reactants or products on an equilibrium system. The concepts are presented and analyzed using graphical representations, qualitative lab data, and modelling. The first part addresses the misconception that equal amounts are required for equilibrium through using a mini-activity that involves the transfer of water between beakers. The second part is a lab activity where students will see how an equilibrium system reacts to a change in concentration. The third part uses manipulatives to understand how an equilibrium operates using the mathematical equilibrium constant (Ksp) at the particulate view.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
All about Linear Programming
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about linear programming (also called linear optimization) to solve engineering design problems. As they work through a word problem as a class, they learn about the ideas of constraints, feasibility and optimization related to graphing linear equalities. Then they apply this information to solve two practice engineering design problems related to optimizing materials and cost by graphing inequalities, determining coordinates and equations from their graphs, and solving their equations. It is suggested that students conduct the associated activity, Optimizing Pencils in a Tray, before this lesson, although either order is acceptable.

Subject:
Algebra
Geometry
Mathematics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/24/2020
Alloy Advantage
Read the Fine Print
Educational Use
Rating
0.0 stars

Students define and classify alloys as mixtures, while comparing and contrasting the properties of alloys to those of pure substances. Students learn that engineers investigate the structures and properties of alloys for biomedical and transportation applications. Pre- and post-assessment handouts are provided.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Janelle Orange
Date Added:
02/24/2020
Alloy the Way to Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as engineering teams, students take measurements and make calculations to determine the specific strength of various alloys and then report their data to the rest of the class. Using this class data, students write data-based recommendations to NASA regarding the best alloy to use in the construction of the engine and engine turbines for the Space Launch System that will eventually be used to transport astronauts to Mars.

Subject:
Chemistry
Mathematics
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Janelle Orange
Date Added:
02/24/2020
The Amazing Aerogel
Read the Fine Print
Educational Use
Rating
0.0 stars

Aerogel, commonly called "frozen smoke," is a super-material with some amazing properties. In this lesson and its associated activity, students learn about this silicon-based solid with a sponge-like structure. Students also learn about density and how aerogel is 99.8% air by volume, making it the lightest solid known to humans! Further, students learn about basic heat transfer and how aerogel is a great thermal insulator, having 39 times more insulation than the best fiberglass insulation. Students also learn about the wide array of aerogel applications.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Claudia K. Gunsch
Desiree L. Plata
Lauren K. Redfern
Osman Karatüm
Date Added:
10/14/2015
The Amazing Buckyball: How to Track Nanomaterials in the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how nanoparticles can be creatively used for medical diagnostic purposes. They learn about buckminsterfullerenes, more commonly known as buckyballs, and about the potential for these complex carbon molecules to deliver drugs and other treatments into the human body. They brainstorm methods to track buckyballs in the body, then build a buckyball from pipe cleaners with a fluorescent tag to model how nanoparticles might be labeled and detected for use in a living organism. As an extension, students research and select appropriate radioisotopes for different medical applications.

Subject:
Biology
Chemistry
Engineering and Information Technologies
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Diana Gano
Donna Tate
Date Added:
09/07/2018