Updating search results...

Search Resources

92 Results

View
Selected filters:
  • Biology
Monumental Movements
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn some of the implications of 3D printing in the biomedical field. Unlike 3D printers used in a classroom or by consumers, which use a plastic filament to produce a product, 3D printing for medical purposes is often with real living cells. In this lesson, students gain an understanding of how 3D printing is changing lives for the better through a presentation and group discussion. In the corresponding activity, they have the opportunity to participate in a hands-on simulation of a real-world 3D printing task.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Amanda Spotz
Date Added:
07/03/2019
Mutation Telephone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
02/24/2020
Mutations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about mutations to both DNA and chromosomes, and uncontrolled changes to the genetic code. They are introduced to small-scale mutations (substitutions, deletions and insertions) and large-scale mutations (deletion duplications, inversions, insertions, translocations and nondisjunctions). The effects of different mutations are studied as well as environmental factors that may increase the likelihood of mutations. A PowerPoint® presentation and pre/post-assessments are provided.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
02/24/2020
The Needs of Living Things
Read the Fine Print
Rating
0.0 stars

Students watch video clips of animals and plants in their natural environments to determine what living things need to survive. They will then complete an illustration of their own real or imagined plant or animal fulfilling one or more of their needs for survival, within their natural environment. While this lesson does a good job explaining how animals meet their needs through their environments, additional lessons and experiences with plants would need to be provided in order to meet the full standard.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Neuron
Unrestricted Use
CC BY
Rating
0.0 stars

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

Subject:
Biology
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Katherine Perkins
Noah Podolefsky
Wendy Adams
Date Added:
10/01/2010
Oil: Clean It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams create, test and improve oil spill cleanup kits, designing them to be inexpensive and accessible for homeowners to use or for big companies to give to individual workers to aid in personal home, community or corporate environmental oil cleanup. After deciding on a target user and scenario, teams conduct research and draw from an assortment of ordinary materials and supplies made available by the teacher. As a concluding gallery walk, each group presents its final prototype and summary poster to the rest of the class.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Norma Carmona
Date Added:
01/03/2018
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Plants, Society, and the Environment (Open Course)
Unrestricted Use
CC BY
Rating
0.0 stars

This open course for Plants, Society, and the Environment was created under a Round Six ALG Textbook Transformation Grant. Topics include cell structure, photosynthesis, taxonomy, biomes, domestication, agriculture, and medicine.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Katie Bridges
Thomas Harnden
Date Added:
03/20/2018
Population Explosion
Read the Fine Print
Rating
0.0 stars

Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a “reaper” button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.

Subject:
Biology
Life Science
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Population Growth Curves
Read the Fine Print
Educational Use
Rating
0.0 stars

Using Avida-ED freeware, students control a few factors in an environment populated with digital organisms, and then compare how changing these factors affects population growth. They experiment by altering the environment size (similar to what is called carrying capacity, the maximum population size that an environment can normally sustain), the initial organism gestation rate, and the availability of resources. How systems function often depends on many different factors. By altering these factors one at a time, and observing the results, students are able to clearly see the effect of each one.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Farell
Jennifer Doherty
Wendy Johnson
Date Added:
09/18/2014
Population Growth in Yeasts
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is the second of two that explore cellular respiration and population growth in yeasts. In the first lesson, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arose during the first lesson and its associated activity, in this lesson students work in small groups to design experiments that will determine how environmental factors affect yeast population growth.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Prodigious Printing Possibilities
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity is designed to give students an understanding of one aspect of what an engineer does and the ability to experience various steps in the engineering design process as it relates to a 3D printing task. Students transform into engineers as they work in teams to carry out a 3D printing task by using a blunt-tip needle syringe to print a line using a variety of colored liquid materials (shampoo, conditioner, aloe, and hand sanitizer) into a small plastic box filled with a gel base. Approximating the work of engineers, the teams observe the interactions between the printed material and the gel base at intervals of 10 minutes and iterate, or change, the ink base as necessary to achieve a goal. Using the dye to color the ink allows students to determine which material will permeate or diffuse throughout the base more effectively. Teams share their results to compare with their classmates. A real-world application for this investigation would be when engineers conduct research to develop new medicines, the goal is for the medicine to make its way through the body in the most effective way so that the body can heal.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Amanda Spotz
Date Added:
07/03/2019
A Recipe for Traits
Read the Fine Print
Rating
0.0 stars

Students create and decode DNA for man’s best friend to observe how variations in DNA lead to the inheritance of different traits. Strips of paper that represent DNA are randomly selected and used to assemble the dog's DNA. Students read the DNA and create a drawing of their pet, and compare it with others in the class to check for similarities and differences.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
Reproduction
Read the Fine Print
Rating
0.0 stars

In this activity, the learner explores various ways in which organisms reproduce. The learner discusses the role that reproduction plays in the cycle of life. By watching short videos and participating in follow-up discussion: 1. They observe that no individual organism lives forever and in order to continue species, organisms must pass their genetic instructions on to the next generation. 2. They learn that organisms reproduce asexually, by dividing and producing two identical copies of themselves. 3. They learn that many plants reproduce sexually, often using complex strategies that have evolved over millions of years. 4. They explore the pros and cons of asexual and sexual reproduction and the reasons both strategies persist.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/24/2020
The Respiratory System of Birds
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video aims to provide an illustrative lesson about the respiratory system in birds and how the adaptations of that system over time have made it different than that of other living creatures, especially mammals. Birds are omnipresent in our lives, and students will come to understand and appreciate the fascinating inner workings of these beautiful creatures. This lesson discusses avian features and differences for 20 to 25 minutes, with approximately 20 minutes of in-class student activities.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Seham Tahir Musa Al-Bohadja
Date Added:
03/18/2020
Selectively Permeable Membranes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Eric Shows
Date Added:
02/24/2020
Soil Biosolarization: Using Food Waste and the Sun to Get Rid of Weeds in Soil
Read the Fine Print
Educational Use
Rating
0.0 stars

Over the course of three sessions, students act as agricultural engineers and learn about the sustainable pest control technique known as soil biosolarization in which organic waste is used to help eliminate pests during soil solarization instead of using toxic compounds like pesticides and fumigants. Student teams prepare seed starter pots using a source of microorganisms (soil or compost) and “organic waste” (such as oatmeal, a source of carbon for the microorganisms). They plant seeds (representing weed seeds) in the pots, add water and cover them with plastic wrap. At experiment end, students count the weed seedlings and assess the efficacy of the soil biosolarization technique in inactivating the weed seeds. An experiment-guiding handout and pre/post quizzes are provided.

Subject:
Biology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Jesús D. Fernández Bayo
Date Added:
02/24/2020
Sound for Sight
Read the Fine Print
Educational Use
Rating
0.0 stars

Echolocation is the ability to orient by transmitting sound and receiving echoes from objects in the environment. As a result of a Marco-Polo type activity and subsequent lesson, students learn basic concepts of echolocation. They use these concepts to understand how dolphins use echolocation to locate prey, escape predators, navigate their environment, such as avoiding gillnets set by commercial fishing vessels. Students will also learn that dolphin sounds are vibrations created by vocal organs, and that sound is a type of wave or signal that carries energy and information especially in the dolphin's case. Students will learn that a dolphin's sense of hearing is highly enhanced and better than that of human hearing. Students will also be introduced to the concept of by-catch Students will learn what happens to animals caught through by-catch and why.

Subject:
Biology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Angela Jiang
Aruna Venkatesan
Billyde Brown
Kim Goetze
Matt Nusnbaum
Mina Innes
Neera Desai
Tom Rose
Vicki Thayer
Date Added:
09/18/2014