Updating search results...

Search Resources

5 Results

View
Selected filters:
  • muscles
Anatomy and Physiology Video Set (GHC)
Unrestricted Use
CC BY
Rating
0.0 stars

This set of anatomy videos illustrating parts of the human body was created under a Round Eleven Mini-Grant for Ancillary Materials Creation.

Topics include:

Axial Skeleton
Appendicular Skeleton
Muscles
Nervous System
Anatomy of the Senses

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lesson
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Jason Christian
Veronica Morin
Date Added:
06/21/2018
Are We Like Robots?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson explores the similarities between how a human being moves/walks and how a robot moves. This allows students to see the human body as a system, i.e., from the perspective of an engineer. It shows how movement results from (i) decision making, i.e., deciding to walk and move, and (ii) implementing the decision by conveying the decision to the muscle (human) or motor (robot).

Subject:
Architectural Drafting
Construction Science Technologies
Engineering and Information Technologies
Material Type:
Lecture Notes
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Satish Nair
Date Added:
09/18/2014
Humans Are Like Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

Four lessons related to robots and people present students with life sciences concepts related to the human body (including brain, nervous systems and muscles), introduced through engineering devices and subjects (including computers, actuators, electricity and sensors), via hands-on LEGO® robot activities. Students learn what a robot is and how it works, and then the similarities and differences between humans and robots. For instance, in lesson 3 and its activity, the human parts involved in moving and walking are compared with the corresponding robot components so students see various engineering concepts at work in the functioning of the human body. This helps them to see the human body as a system, that is, from the perspective of an engineer. Students learn how movement results from 1) decision making, such as deciding to walk and move, and 2) implementation by conveying decisions to muscles (human) or motors (robot).

Subject:
Engineering and Information Technologies
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
Measuring Our Muscles
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams build model hand dynamometers used to measure grip strengths of people recovering from sports injuries. They use their models to measure how much force their classmates muscles are capable of producing, and analyze the data to determine factors that influence a person's grip strength. They use this information to produce a recommendation of a hand dynamometer design for a medical office specializing in physical therapy. They also consider the many other ways grip strength data is used by engineers to design everyday products.

Subject:
Engineering and Information Technologies
Health Science Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jake Lewis
Malinda Schaefer Zarske
Date Added:
10/14/2015
Walk, Run, Jump!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students participate in a series of timed relay races using their skeletal muscles. The compare the movement of skeletal muscle and relate how engineers help astronauts exercise skeletal muscles in space.

Subject:
Anatomy/Physiology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Beth Myers
Denali Lander
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015