Updating search results...

Search Resources

1510 Results

View
Selected filters:
  • TeachEngineering
How to Pull Something Heavy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure and analyze forces that act on vehicles pulling heavy objects while moving at a constant speed on a frictional surface. They study how the cars interact with their environments through forces, and discover which parameters in the design of the cars and environments could be altered to improve vehicles' pulling power. This LEGO® MINDSTORMS® based activity is geared towards, but not limited to, physics students.

Subject:
Engineering and Information Technologies
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Date Added:
09/18/2014
How to be a Great Navigator!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn how great navigators of the past stayed on course that is, the historical methods of navigation. The concepts of dead reckoning and celestial navigation are discussed.

Subject:
Engineering and Information Technologies
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Penny Axelrad
Date Added:
09/18/2014
Human Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students' power is then compared to horse power and the power required to light 60-watt light bulbs.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Human Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the human water cycle, or how humans impact the water cycle by settling down in civilizations. Specifically, they learn how people obtain, use and dispose of water. Students also learn about shortages of treated, clean and safe water and learn about ways that engineers address this issue through water conservation and graywater recycling.

Subject:
Engineering and Information Technologies
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Katie Spahr
Malinda Schaefer Zarske
Date Added:
09/18/2014
Human and Robot Sensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with a rigorous background in human "sensors" (including information on the main five senses, sensor anatomies, and nervous system process) and their engineering equivalents, setting the stage for three associated activities involving sound sensors on LEGO® robots. As they learn how robots receive input from sensors, transmit signals and make decisions about how to move, students reinforce their understanding of the human body's sensory process.

Subject:
Anatomy/Physiology
Engineering and Information Technologies
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Humans Are Like Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

Four lessons related to robots and people present students with life sciences concepts related to the human body (including brain, nervous systems and muscles), introduced through engineering devices and subjects (including computers, actuators, electricity and sensors), via hands-on LEGO® robot activities. Students learn what a robot is and how it works, and then the similarities and differences between humans and robots. For instance, in lesson 3 and its activity, the human parts involved in moving and walking are compared with the corresponding robot components so students see various engineering concepts at work in the functioning of the human body. This helps them to see the human body as a system, that is, from the perspective of an engineer. Students learn how movement results from 1) decision making, such as deciding to walk and move, and 2) implementation by conveying decisions to muscles (human) or motors (robot).

Subject:
Engineering and Information Technologies
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
Hurricanes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn what causes hurricanes and what engineers do to help protect people from destruction caused by hurricane winds and rain. Research and data collection vessels allow for scientists and engineers to model and predict weather patterns and provide forecasts and storm warnings to the public. Engineers are also involved in the design and building of flood-prevention systems, such as levees and floodwalls. During the 2005 hurricane season, levees failed in the greater New Orleans area, contributing to the vast flooding and destruction of the historic city. In the associated activity, students learn how levees work, and they build their own levees and put them to the test!

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Kate Beggs
Date Added:
09/18/2014
Hybrid Vehicle Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Hydraulic Arm Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build a mechanical arm that lifts and moves an empty 12-ounce soda can using hydraulics for power. Small design teams (1-2 students each) design and build a single axis for use in the completed mechanical arm. One team designs and builds the grasping hand, another team the lifting arm, and a third team the rotation base. The three groups must work to communicate effectively through written and verbal communication and sketches.

Subject:
Architectural Drafting
Construction Science Technologies
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elissa Milto
Eric Chilton
Karen Carpenito
Date Added:
09/18/2014
Hydrogen-Oxygen Reaction Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).

Subject:
Chemistry
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Stephen Dent
Date Added:
09/18/2014
I Breathe WHAT??
Read the Fine Print
Educational Use
Rating
0.0 stars

Students capture and examine air particles to gain an appreciation of how much dust, pollen and other particulate matter is present in the air around them. Students place "pollution detectors" at various locations to determine which places have a lot of particles in the air and which places do not have as many. Quantifying and describing these particles is a first step towards engineering methods of removing contaminants from the air.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
I Can't Take the Pressure!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop an understanding of air pressure by using candy or cookie wafers to model how it changes with altitude, by comparing its magnitude to gravitational force per unit area, and by observing its magnitude with an aluminum can crushing experiment.

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
10/14/2015
I Don't Believe My Eyes!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop their understanding of the effects of invisible air pollutants with a rubber band air test, a bean plant experiment and by exploring engineering roles related to air pollution. In an associated literacy activity, students develop visual literacy and write photograph captions. They learn how images are manipulated for a powerful effect and how a photograph can make the invisible (such as pollutants) visible. Note: You may want to set up the activities for Air Pollution unit, Lessons 2 and 3, simultaneously as they require extended data collection time and can share collection sites.

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
I Feel Renewed!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will simulate the equal and unequal distribution of our renewable resources. Also, they will consider the impact of our increasing population upon these resources and how engineers develop technologies to create resources.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ice, Ice, PV!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.

Subject:
Electronic Technologies
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Jack Baum Abby Watrous
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Identifying Gait Metrics
Read the Fine Print
Educational Use
Rating
0.0 stars

Gait analysis is the study of human motion that can be utilized as biometric information or identification, for medical diagnostics or for comparative biomechanics. In this activity, students observe walking human subjects and then discuss parameters that could be used to characterize walking gaits. They use accelerometers to collect and graph acceleration vs. time data that can help in gait analysis—all part of practicing the engineering data analysis process. Students complete this activity before learning the material presented in the associated lesson.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
If You're Not Part of the Solution, You're Part of the Precipitate!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students continue the research begun in the associated lesson as if they were biomedical engineers working for a pharmaceutical company. Groups each perform a simple chemical reaction (to precipitate solid calcium out of solution) to observe what may occur when Osteopontin levels drop in the body. With this additional research, students determine potential health complications that might arise from a new drug that could reduce inflammatory pain in many patients, improving their quality of life. The goal of this activity is to illustrate biomedical engineering as medical problem solving, as well as emphasize the importance of maintaining normal body chemistry.

Subject:
Engineering and Information Technologies
Health Science Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014
I'm Not in Range
Read the Fine Print
Educational Use
Rating
0.0 stars

In this role-playing activity, students learn how cellular phone service works, its advantages and its limitations. Students also learn about the advantages and limitations of satellite phone service. Phone communication involves many aspects of science, math and engineering, and this activity conveys to students how these technologies help people to stay better connected. Students use what they learn to understand what communication options might be available for Maya and her parents, Spacewoman Tess and Spaceman Rohan.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jay Shah
Malinda Schaefer Zarske
Date Added:
10/14/2015
Imagine Life without Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of inertia and its application to a world without the force of friction acting on moving objects. When an object is in motion, friction tends to be the force that acts on this object to slow it down and eventually come to a stop. By severely limiting friction through the use of the hover pucks, students learn that the energy of one moving puck is transferred directly to another puck at rest when they collide. Students learn the concept of the conservation of energy via a "collision," and will realize that with friction, energy is converted primarily to heat to slow and stop an object in motion. In the associated activity, "The Puck Stops Here," students will investigate the frictional force of an object when different materials are placed between the object and the ground. This understanding will be used to design a new hockey puck for the National Hockey League.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anne Vanderschueren
Greg Larkin
Date Added:
09/18/2014