Updating search results...

Search Resources

22 Results

View
Selected filters:
  • vision
20/20 Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students determine their own eyesight and calculate what a good average eyesight value for the class would be. Students learn about technologies to enhance eyesight and how engineers play an important role in the development of these technologies.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Joe Freidrichsen
Malinda Schaefer Zarske
Date Added:
09/26/2008
Biomedical Devices for the Eyes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.

Subject:
Anatomy/Physiology
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lesley Herrmann
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Color Vision
Unrestricted Use
CC BY
Rating
0.0 stars

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white light. View the light as a solid beam, or see the individual photons.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
10/30/2006
Don't Bump into Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Electronic Technologies
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Engineering and Information Technologies
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Geometric Optics
Unrestricted Use
CC BY
Rating
0.0 stars

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust the focal length of the lens, move the object, move the lens, or move the screen.

Subject:
Geometry
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Kathy Perkins
Michael Dubson
Mindy Gratny
Date Added:
07/13/2008
The Grand Challenge: Simulating Human Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They are asked to write journal responses to the question and brainstorm what information they require to answer the question. Their ideas are shared with the class and recorded. Then, students share their ideas with each other and brainstorm any additional ideas. Next, students draw a basis for the average peripheral vision of humans and then compare that range to the range of two different focal lengths in a camera. Through the associated activity provides, students see the differences between human and computer vision.

Subject:
Engineering and Information Technologies
Life Science
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
How Does an Ultrasonic Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how ultrasonic sensors work, reinforcing the connection between this sensor and how humans, bats and dolphins estimate distance. They learn the echolocation process sound waves transmitted, bounced back and received, with the time difference used to calculate the distance of objects. Two mini-activities, which use LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors, give students a chance to experiment with ultrasonic sensors in preparation for the associated activity. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO ultrasonic sensor. Pre/post quizzes are provided. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Light Properties
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic properties of light and how light interacts with objects. They are introduced to the additive and subtractive color systems, and the phenomena of refraction. Students further explore the differences between the additive and subtractive color systems via predictions, observations and analysis during three demonstrations. These topics help students gain a better understanding of how light is connected to color, bringing them closer to answering an overarching engineering challenge question.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Marissa H. Forbes
Date Added:
09/18/2014
Panoptes and the Bionic Eye
Read the Fine Print
Educational Use
Rating
0.0 stars

Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Gisselle Cunningham
Michael Trumpis
Shingi Middelmann
Date Added:
10/14/2015
Peripheral Vision Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.

Subject:
Engineering and Information Technologies
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Protect Those Eyes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build prototypes for protective eyewear. They choose different activities or sports that require protective eyewear and design a device for that particular use. Students learn about the many ways in which the eyes can be damaged and how engineers incorporate different features and materials into eyewear designs to best protect the eyes.

Subject:
Engineering and Information Technologies
Health Science Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lesley Herrmann
Malinda Schaefer Zarske
William Surles
Date Added:
10/14/2015
Redesigning a Classroom for the Visually Impaired
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice human-centered design by imagining, designing and prototyping a product to improve classroom accessibility for the visually impaired. To begin, they wear low-vision simulation goggles (or blindfolds) and walk with canes to navigate through a classroom in order to experience what it feels like to be visually impaired. Student teams follow the steps of the engineering design process to formulate their ideas, draw them by hand and using free, online Tinkercad software, and then 3D-print (or construct with foam core board and hot glue) a 1:20-scale model of the classroom that includes the product idea and selected furniture items. Teams use a morphological chart and an evaluation matrix to quantitatively compare and evaluate possible design solutions, narrowing their ideas into one final solution to pursue. To conclude, teams make posters that summarize their projects.

Subject:
Engineering and Information Technologies
Geometry
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Manuel Figueroa
Date Added:
02/17/2017
Robotics Peripheral Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit is designed for advanced programming classes. It leads students through a study of human vision and computer programming simulation. Students apply their previous knowledge of arrays and looping structures to implement a new concept of linked lists and RGB decomposition in order to solve the unit's Grand Challenge: writing a program to simulate peripheral vision by merging two images. This unit connects computer science to engineering by incorporating several science topics (eye anatomy, physics of light and color, mathematics, and science of computers) and guides students through the design process in order to create final simulations.

Subject:
Engineering and Information Technologies
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Sensory Toys Make Sense!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and create sensory integration toys for young children with developmental disabilities an engineering challenge that combines the topics of biomedical engineering, engineering design and human senses. Students learn the steps of the engineering design process (EDP) and how to use it for problem solving. After learning about the human sensory system, student teams apply the EDP to their sensory toy projects. They design and make plans within given project constraints, choose materials, fabricate prototypes, evaluate the prototypes, and give and receive peer feedback. Students experience the entire design-build-test-redesign process and conclude with a class presentation in which they summarize their experiences with the EDP steps and their sensory toy project development.

Subject:
Engineering and Information Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristen Billiar
Terri Camesano
Thomas Oliva
Date Added:
10/14/2015
The Three Color Mystery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to an engineering challenge in which they are given a job assignment to separate three types of apples. However, they are unable to see the color differences between the apples, and as a result, they must think as engineers to design devices that can be used to help them distinguish the apples from one another. Solving the challenge depends on an understanding of wave properties and the biology of sight. After being introduced to the challenge, students form ideas and brainstorm about what background knowledge is required to solve the challenge. A class discussion produces student ideas that can be grouped into broad subject categories: waves and wave properties, light and the electromagnetic spectrum, and the structure of the eye.

Subject:
Biology
Life Science
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Date Added:
02/24/2020
Understanding the Structure of the Eye
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the anatomical structure of the human eye and how humans see light, as well as some causes of color blindness. They conduct experiments as an example of research to gather information. During their investigations, they test other students' vision, gathering data and measurements about when objects appear blurry. These topics help students prepare to design solutions to an overarching engineering challenge question.

Subject:
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Date Added:
02/24/2020
Watch Out for the Blind Spots
Read the Fine Print
Educational Use
Rating
0.0 stars

In this service-learning engineering project, students follow the steps of the engineering design process to design a hearing testing device. More specifically, they design a prototype machine that can be used to test the peripheral vision of partially-blind, pre-verbal children. Students learn about the basics of vision and vision loss. They also learn how a peripheral vision tester for adults works (by testing the static peripheral vision in the four quadrants of the visual field with four controllable lights in specific locations). Then they modify the idea of the adult peripheral vision tester to make it usable for testing young children. The class designs and builds one complete prototype, working in sub-groups of four or five students each to build sub-components of the project design.

Subject:
Engineering and Information Technologies
Health Science Technologies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alison Pienciak
Denise W. Carlson
Eszter Horanyi
Jonathan MacNeil
Malinda Zarske
Stephanie Rivale
Date Added:
09/18/2014
Waves Go Public!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply everything they have learned over the course of the associated lessons about waves, light properties, the electromagnetic spectrum, and the structure of the eye, by designing devices that can aid color blind people in distinguishing colors. Students learn about the engineering design process and develop three possible solutions to the engineering design challenge outlined in lesson 1 of this unit. They create posters to display their three design ideas and the comparisons used to select the best design. Then, students create brochures for their final design ideas, and "sell" the ideas to their "client." Through this activity, students complete the legacy cycle by "going public" with the creation of their informative posters and brochures that explain their designs, as well as color blindness and how people see color, in "client" presentations.

Subject:
Biology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Date Added:
02/24/2020