Updating search results...

Search Resources

611 Results

View
Selected filters:
  • Lesson Plan
Biomimicry and Sustainable Design - Nature Is an Engineering Marvel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of biomimicry and sustainable design. Countless examples illustrate the wisdom of nature in how organisms are adapted for survival, such as in body style, physiological processes, water conservation, thermal radiation and mutualistic relationships, to assure species perpetuation. Students learn from articles and videos, building a framework of evidence substantiating the indisputable fact that organisms operate "smarter" and thus provide humans with inspiration in how to improve products, systems and cities. As students focus on applying the ecological principles of the previous lessons to the future design of our human-centered world, they also learn that often our practices are incapable of replicating the precision in which nature completes certain functions, as evidenced by our dependence on bees as pollinators of the human food supply. The message of biomimicry is one of respect: study to improve human practices and ultimately protect natural systems. This heightened appreciation helps students to grasp the value of industry and urban mimetic designs to assure protection of global resources, minimize human impact and conserve nonrenewable resources. All of these issues aid students in creating a viable guest resort in the Sonoran Desert.

Subject:
Ecology
Engineering and Information Technologies
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy J. Holmgren
Date Added:
09/18/2014
Biorecycling: Using Nature to Make Resources from Waste
Read the Fine Print
Educational Use
Rating
0.0 stars

By studying key processes in the carbon cycle, such as photosynthesis, composting and anaerobic digestion, students learn how nature and engineers "biorecycle" carbon. Students are exposed to examples of how microbes play many roles in various systems to recycle organic materials and also learn how the carbon cycle can be used to make or release energy.

Subject:
Atmospheric Science
Engineering and Information Technologies
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Biot-Savart Law
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson begins with a demonstration prompting students to consider how current generates a magnetic field and the direction of the field that is generated. Through formal lecture, students learn Biot-Savart's law in order to calculate, most simply, the magnetic field produced in the center of a circular current carrying loop. For applications, students find it is necessary to integrate the field produced over all small segments in an actual current carrying wire.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Blast Off
Read the Fine Print
Educational Use
Rating
0.0 stars

Rockets need a lot of thrust to get into space. In this lesson, students learn how rocket thrust is generated with propellant. The two types of propellants are discussed and relation to their use on rockets is investigated. Students learn why engineers need to know the different properties of propellants.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
09/18/2014
Blazing Gas
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our Sun as they explore its composition, what is happening inside it, its relationship to our planet (our energy source), and the ways engineers help us learn about it.

Subject:
Astronomy
Engineering and Information Technologies
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Jessica Butterfield
Jessica Todd
Date Added:
09/18/2014
Blood Clots, Polymers and Strokes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the circulatory system with an emphasis on the blood clotting process, including coagulation and the formation and degradation of polymers through their underlying atomic properties. They learn about the medical emergency of strokes the loss of brain function commonly due to blood clots including various causes and the different effects depending on the brain location, as well as blood clot removal devices designed by biomedical engineers.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ann McCabe
Azim Laiwalla
Carleigh Samson
Victoria Lanaghan
Date Added:
09/18/2014
Blood Pressure Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students study how heart valves work and investigate how valves that become faulty over time can be replaced with advancements in engineering and technology. Learning about the flow of blood through the heart, students are able to fully understand how and why the heart is such a powerful organ in our bodies.

Subject:
Engineering and Information Technologies
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Body Circulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the circulatory system, the heart, and blood flow in the human body. Through guided pre-reading, during-reading and post-reading activities, students learn about the circulatory system's parts, functions and disorders, as well as engineering medical solutions. By cultivating literacy practices as presented in this lesson, students can improve their scientific and technological literacy.

Subject:
Engineering and Information Technologies
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jay Shah
Malinda Schaefer Zarske
Todd Curtis
Date Added:
09/18/2014
Body Full of Crystals
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about various crystals, such as kidney stones, within the human body. They also learn about how crystals grow and ways to inhibit their growth. They also learn how researchers such as chemical engineers design drugs with the intent to inhibit crystal growth for medical treatment purposes and the factors they face when attempting to implement their designs. A day before presenting this lesson to students, conduct the associated activity, Rock Candy Your Body.

Subject:
Chemistry
Engineering and Information Technologies
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrea Lee
Megan Ketchum
Date Added:
10/14/2015
Bone Density Challenge Introduction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the challenge question, which revolves around proving that a cabinet x-ray system can produce bone mineral density images. Students work independently to generate ideas from the questions provided, then share with partners and then with the class as part of the Multiple Perspectives phase of this unit. Then, as part of the associated activity, students explore multiple websites to gather information about bone mineral density and answer worksheet questions, followed by a quiz on the material covered in the articles.

Subject:
Engineering and Information Technologies
Life Science
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Megan Johnston
Date Added:
09/18/2014
Bone Density Math and Logarithm Introduction
Read the Fine Print
Educational Use
Rating
0.0 stars

In their reading from activity 1 of this unit, students should have discovered the term "logarithm." It is at this point that they begin their study of logarithms. Specifically, students examine the definition, history and relationship to exponents; they rewrite exponents as logarithms and vice versa, evaluating expressions, solving for a missing piece. Students then study the properties of logarithms (multiplication/addition, division/subtraction, exponents). They complete a set of practice problems to apply the skills they have learned (rewriting logarithms and exponents, evaluating expressions, solving/examining equations for a missing variable.) Then they complete a short quiz covering what they have studied thus far concerning logarithms (problems similar to the practice problems). They consider how what they have learned moves them closer to answering the unit's challenge question.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bone Fractures and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the role engineers and engineering play in repairing severe bone fractures. They acquire knowledge about the design and development of implant rods, pins, plates, screws and bone grafts. They learn about materials science, biocompatibility and minimally-invasive surgery.

Subject:
Anatomy/Physiology
Engineering and Information Technologies
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Todd Curtis
Date Added:
09/18/2014
Bone Mineral Density Math and Beer's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

Students revisit the mathematics required to find bone mineral density, to which they were introduced in lesson 2 of this unit. They learn the equation to find intensity, Beer's law, and how to use it. Then they complete a sheet of practice problems that use the equation.

Subject:
Engineering and Information Technologies
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bones! Bones! Bones!
Read the Fine Print
Educational Use
Rating
0.0 stars

After learning, comparing and contrasting the steps of the engineering design process (EDP) and scientific method, students review the human skeletal system, including the major bones, bone types, bone functions and bone tissues, as well as other details about bone composition. Students then pair-read an article about bones and bone growth and compile their notes to summarize the article. Finally, students complete a homework assignment to review the major bones in the human body, preparing them for the associated activities in which they create and test prototype replacement bones with appropriate densities. Two PowerPoint(TM) presentations, pre-/post-test, handout and worksheet are provided.

Subject:
Anatomy/Physiology
Engineering and Information Technologies
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Dua Chaker
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015
Both Fields at Once?!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.

Subject:
Electronic Technologies
Engineering and Information Technologies
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Boxed In and Wrapped Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.

Subject:
Engineering and Information Technologies
Geometry
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Brain is a Computer
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the similarities between the human brain and its engineering counterpart, the computer. Since students work with computers routinely, this comparison strengthens their understanding of both how the brain works and how it parallels that of a computer. Students are also introduced to the "stimulus-sensor-coordinator-effector-response" framework for understanding human and robot actions.

Subject:
Engineering and Information Technologies
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Breaking the Mold
Read the Fine Print
Educational Use
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Architectural Drafting
Construction Science Technologies
Engineering and Information Technologies
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
02/19/2009