Students are introduced to the world of creative engineering product design. Through …
Students are introduced to the world of creative engineering product design. Through six activities, teams work through the steps of the engineering design process (or loop) by completing an actual design challenge presented in six steps. The project challenge is left up to the teacher or class to determine; it might be one decided by the teacher, brainstormed with the class, or the example provided (to design a prosthetic arm that can perform a mechanical function). As students begin by defining the problem, they learn to recognize the need, identify a target population, relate to the project, and identify its requirements and constraints. Then they conduct research, brainstorm alternative solutions, evaluate possible solutions, create and test prototypes, and consider issues for manufacturing. See the Unit Schedule section for a list of example design project topics.
Students learn about viscoelastic material behavior, such as strain rate dependence and …
Students learn about viscoelastic material behavior, such as strain rate dependence and creep, by using silly putty, an easy-to-make polymer material. They learn how to make silly putty, observe its behavior with different strain rates, and then measure the creep time of different formulations of silly putty. By seeing the viscoelastic behavior of silly putty, students start to gain an understanding of how biological materials function. Students gain experience in data collection, graph interpretation, and comparison of material properties to elucidate material behavior. It is recommended that students perform Part 1of the activity first (making and playing with silly putty), then receive the content and concept information in the associated lesson, and then complete Part 2 of the activity (experimenting and making measurements with silly putty).
Leading builders and construction firms are always in search of affordable, high-quality, …
Leading builders and construction firms are always in search of affordable, high-quality, and efficient materials. Wood – used for building projects for more than10,000 years – was largely replaced by steel and concrete starting in the early 20thcentury. But now, thanks to the emergence of Cross-Laminated Timber (CLT), woodis not just making a comeback, it might very well be the most innovative option inthe construction industry today.
Students explore the many different ways that engineers provide natural lighting to …
Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.
Students learn about nanocomposites, compression and strain as they design and program …
Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.
Students practice the initial steps involved in an engineering design challenge. They …
Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)
Through Internet research, patent research, standards and codes research, user interviews (if …
Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)
Brainstorming is a team creativity activity that helps generate a large number …
Brainstorming is a team creativity activity that helps generate a large number of potential solutions to a problem. In this activity, students participate in a group brainstorming activity to generate possible solutions to their engineering design challenge. Students learn brainstorming guidelines and practice within their teams to create a poster of ideas. The posters are used in a large group critiquing activity that ultimately helps student teams create a design project outline. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 3 in a series of six that guide students through the engineering design loop.)
Students learn about the manufacturing phase of the engineering design process. They …
Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)
Student teams design and create LEGO® structures to house and protect temperature …
Student teams design and create LEGO® structures to house and protect temperature sensors. They leave their structures in undisturbed locations for a week, and regularly check and chart the temperatures. This activity engages students in the design and analysis aspects of engineering.
Students are introduced to the biomechanical characteristics of helmets, and are challenged …
Students are introduced to the biomechanical characteristics of helmets, and are challenged to incorporate them into designs for helmets used for various applications. By doing this, they come to understand the role of enginering associated with saftey products. The use of bicycle helmets helps to protect the brain and neck in the event of a crash. To do this effectively, helmets must have some sort of crushable material to absorb the collision forces and a strap system to make sure the protection stays in place. The exact design of a helmet depends on the needs and specifications of the user.
The purpose of this activity is for the students to draw a …
The purpose of this activity is for the students to draw a design for their own flying machine. They will apply their knowledge of aircraft design and the forces acting on them. The students will start with a brainstorming activity where they come up with creative uses for every day objects. They will then use their creativity and knowledge of airplanes to design their own flying machine.
Students design and build a model city powered by the sun! They …
Students design and build a model city powered by the sun! They learn about the benefits of solar power, and how architectural and building engineers integrate photovoltaic panels into the design of buildings.
Student teams use their knowledge about ancient Egypt to design playgrounds for …
Student teams use their knowledge about ancient Egypt to design playgrounds for Egyptian children. This involves brainstorming ideas on paper, building models with LEGO® bricks or other materials, and explaining their ideas to the class in five-minute presentations.
Students learn about the types of possible loads, how to calculate ultimate …
Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.
Student teams act as engineers and brainstorm, design, create and test their …
Student teams act as engineers and brainstorm, design, create and test their ideas for packaging to protect a raw egg shipped in a 9 x 12-in envelope. They follow the steps of the engineering design process and aim for a successful solution with no breakage, low weight, minimal materials and recyled/reused materials. Students come to understand the multi-faceted engineering considerations associated with the packaging of items to preserve, market and safely transport goods.
The Challenge Question of the Legacy Cycle draws the student into considering …
The Challenge Question of the Legacy Cycle draws the student into considering the engineering ingenuity of nature. It will force him to analyze, appreciate and understand the wisdom of these designs as the student team focuses on meeting each of the challenge's requirements. The student is asked, with his team members, to envision a sustainable design for a future guest village within the Saguaro National Park, outside of Tucson, Arizona. What issues need to be addressed to support the comforts of park visitors without compromising the natural resources or endangering the endemic species of the area? A deeper scope of application will reveal extensions of this design in the incorporation of urban planning and systems design. It also strengthens the concept of manufacturing and building without producing waste or pollution.
Students create model elevator carriages and calibrate them, similar to the work …
Students create model elevator carriages and calibrate them, similar to the work of design and quality control engineers. Students use measurements from rotary encoders to recreate the task of calibrating elevators for a high-rise building. They translate the rotations from an encoder to correspond to the heights of different floors in a hypothetical multi-story building. Students also determine the accuracy of their model elevators in getting passengers to their correct destinations.
Students learn how rooftop gardens help the environment and the lives of …
Students learn how rooftop gardens help the environment and the lives of people, especially in urban areas. They gain an understanding of how plants reduce the urban heat island effect, improve air quality, provide agriculture space, reduce energy consumption and increase the aesthetic quality of cities. This draws upon the science of heat transfer (conduction, convection, radiation, materials, color) and ecology (plants, shade, carbon dioxide, photosynthesis), and the engineering requirements for rooftop gardens. In the associated activity, students apply their scientific knowledge to model and measure the effects of green roofs.
This menu presents a variety of ways Arizona employers can support students’ …
This menu presents a variety of ways Arizona employers can support students’ planning and preparation for career paths and success in the world of work, with options to match employer priorities and available time and resources.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.