Students are introduced to static equilibrium by learning how forces and torques …
Students are introduced to static equilibrium by learning how forces and torques are balanced in a well-designed engineering structure. A tower crane is presented as a simplified two-dimensional case. Using Popsicle sticks and hot glue, student teams design, build and test a simple tower crane model according to these principles, ending with a team competition.
Students are challenged to design, build and test small-scale launchers while they …
Students are challenged to design, build and test small-scale launchers while they learn and follow the steps of the engineering design process. For the challenge, the "slingers" must be able to aim and launch Ping-Pong balls 20 feet into a goal using ordinary building materials such as tape, string, plastic spoons, film canisters, plastic cups, rubber bands and paper clips. Students first learn about defining the problem and why each step of the process is important. Teams develop solutions and determine which is the best based on design requirements. After making drawings, constructing and testing prototypes, they evaluate the results and make recommendations for potential second-generation prototypes.
Using a household fan, cardboard box and paper towels, student teams design …
Using a household fan, cardboard box and paper towels, student teams design and build their own evaporative cooler prototype devices. They learn about the process that cools water during the evaporation of water. They make calculations to determine a room's cooling load, and thus determine the swamp cooler size. This activity adds to students' understanding of the behind-the-scenes mechanical devices that condition and move air within homes and buildings for human health and comfort.
Students are introduced to the health risks caused by cooking and heating …
Students are introduced to the health risks caused by cooking and heating with inefficient cook stoves inside homes, a common practice in rural developing communities. Students simulate the cook stove scenario and use the engineering design process, including iterative trials, to increase warmth inside a building while reducing air quality problems. Students then collect and graph data, and analyze their findings.
Students build model caverns and bury them in a tray of sand. …
Students build model caverns and bury them in a tray of sand. They test the models by dropping balls onto them to simulate an asteroid hitting the Earth. By molding papier-mache or clay around balloons (to form domes), or around small cardboard boxes (to form rectangular structures), students create unique models of their cavern designs.
Towers have been a part of developed society for centuries, serving a …
Towers have been a part of developed society for centuries, serving a variety of purposes, from watch towers to modern cell towers. In this activity, student groups design and build three types of towers (guyed or cable-supported, free-standing or self-standing, and monopole), engineering them to meet the requirements that they hold an egg one foot high for 15 seconds.
Students work as engineers to design and test trebuchets (in this case …
Students work as engineers to design and test trebuchets (in this case LEGO® MINDSTORMS® robots) that can launch objects. During the testing stage, they change one variable at a time to study its effect on the outcome of their designs. Specifically, they determine how far objects travel depending on their weights. As students learn about the different components of robot design and the specific function controls, they determine what design features are important for launching objects.
Students work within constraints to construct model trusses and then test them …
Students work within constraints to construct model trusses and then test them to failure as a way to evaluate the relative strength of different truss configurations and construction styles. Each student group uses Popsicle sticks and hot glue to build a different truss configuration from a provided diagram of truss styles. Within each group, each student builds two exact copies of the team's truss configuration using his/her own construction method, one of which is tested under shear conditions and the other tested under compression conditions. Results are compiled and reviewed as a class to analyze the strength of different types of shapes and construction methods under the two types of loads. Students make and review predictions, and normalize strengths. Teams give brief presentations to recap their decisions, results and analysis.
Students practice the ability to produce clear, complete, accurate and detailed design …
Students practice the ability to produce clear, complete, accurate and detailed design drawings through an engineering design challenge. Using only the specified materials, teams are challenged to draw a design for a wind-powered car. Then, they trade engineering drawings with another group and attempt to construct the model cars in order to determine how successfully the original design intentions were communicated through sketches, dimensions and instructions.
Welcome to AZ Career and Technical Education Our Vision: Develop Arizona's competitive …
Welcome to AZ Career and Technical Education Our Vision: Develop Arizona's competitive workforce through the power of Career and Technical Education.
Our Mission: Career and Technical Education will engage Arizona learners in relevant experiences leading to purposeful and economically viable careers.
Career and Technical Education is part of a well-rounded education and, as such, CTE programs are eligible to access Title IV funds.
Students are presented with an overview of engineering and design. Various engineering …
Students are presented with an overview of engineering and design. Various engineering disciplines are discussed in some detail using slides and an online video and website. The concept of design is introduced by presenting the basic steps of the engineering design process. Students learn that design is not necessarily restricted to engineering, but a general concept applicable to all walks of life. To strengthen their understanding, students are challenged to design a picnic for their friends by considering its various components as they go through the design process steps. This prepares them for subsequent design challenges such as those in the associated activities of this unit. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.
In this open-ended design activity, students use everyday materials milk cartons, water …
In this open-ended design activity, students use everyday materials milk cartons, water bottles, pencils, straws, candy to build small-scale transportation devices. They incorporate the use two simple machines a wheel and axle, and a lever into their designs. Student pairs choose their materials and engineer solutions suitable to convey pyramid-building materials (small blocks of clay). They race their carts/trucks, measuring distance, time and weight; and then calculate speed.
When you walk or drive around your neighborhood, what do the roofs …
When you walk or drive around your neighborhood, what do the roofs look like? What if you lived in an area with a different climate, how might that affect the style of roofs that you see? Through this introductory engineering activity, students explore the advantages of different roof shapes for different climates or situations. They observe and discuss what happens in a teacher demo when a "snow load" (sifted cups of flour) is placed on three model roof shapes.
Students reinforce an antenna tower made from foam insulation so that it …
Students reinforce an antenna tower made from foam insulation so that it can withstand a 480 N-cm bending moment (torque) and a 280 N-cm twisting moment (torque) with minimal deflection. During one class period, students discuss the problem, run the initial bending and torsion tests and graph the results. During the following class periods, students design, construct and test sturdier towers, and graph the results.
Students experience civil and environmental engineering by planning a housing development in …
Students experience civil and environmental engineering by planning a housing development in an existing biome, while also protecting the native species that live there. They conduct research, draw plans, make brochures and give presentations, with each team having a member serving as a project manager, civil engineer, environmental engineer and graphic designer. The best designs creatively balance the needs and resources necessary to support both the native species and human infrastructure.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.